Fourier Analysis April 11, 2024
Review.
Application 2: Steady state heat equation
on the upper malf plane.

$$U = U(x, y)$$
 temperation distribution,
 $U = U(x, y)$ temperation distribution,
 $U = U(x, y) = f(x), \quad x \in \mathbb{R}, \quad y > 0,$
 $U(x, o) = f(x), \quad x \in \mathbb{R}.$
Set
 $p_{y}(x) = \frac{1}{\pi} \frac{y}{x^{2}+y^{2}}, \quad x \in \mathbb{R}, \quad y > 0.$
By the method of Fourier transform, we derived that
 $U(x, y) = f(x), \quad (x, y) \in \mathbb{R} \times \mathbb{R}_{+}$
is a formal solution of (x) .
Next we will conduct a theoretic check.

Pf. Here we only prove
$$\textcircled{P}$$
.
We will show that $\exists C > 0$ such that
 $|U(x,y)| \leq \begin{cases} C \cdot \left(\frac{1}{1+x^2} + \frac{y}{x^2+y^2}\right), \\ \frac{C}{y} \end{cases}$
for all $x \in \mathbb{R}, y > 0$

Then

$$\begin{aligned} |\langle t \rangle| &\leq \int |f(x-t)| P_{y}(t) dt \\ &|t| &\leq \frac{|x|}{2} \\ &\leq \int \frac{c}{|t| &|x|^{2}} \frac{c}{|t| (\frac{|x|}{2})^{2}} P_{y}(t) dt \\ &\leq \frac{c}{|t| (\frac{|x|}{2})^{2}} \cdot \int_{-\infty}^{\infty} P_{y}(t) dt \\ &\leq \frac{c}{|t| (\frac{|x|}{2})^{2}} \cdot \int_{-\infty}^{\infty} P_{y}(t) dt \\ &\leq \frac{4c}{|t| |x|^{2}} \\ &|(II)| &\leq \int |f(x-t)| \cdot \frac{1}{II} \frac{y}{y^{2} + t^{2}} dt \\ &\leq \int_{|t| &\geq \frac{|x|}{2}} |f(x-t)| \cdot \frac{1}{II} \frac{y}{y^{2} + \frac{|x|^{2}}{4}} dt \\ &\leq \int_{|t| &\geq \frac{|x|}{2}} |f(x-t)| \cdot \frac{1}{II} \frac{y}{y^{2} + \frac{|x|^{2}}{4}} dt \\ &\leq \frac{4y}{I(t)^{2} + 4x^{2}} \cdot \int_{-\infty}^{\infty} |f(c)| dt \\ &\leq \frac{C}{I} \frac{y}{y^{2} + \chi^{2}} \\ \end{aligned}$$

Thm 2 (Uniqueness)
Let
$$U \in C^{2}(R \times R_{+}) \cap C(\overline{R \times R_{+}})$$
.
Suppose U satisfies that
 $\begin{cases} \Delta U = 0 \quad \text{on } R \times R_{+} \\ U(x,o) = 0 \quad \text{on } R \end{cases}$
Moreover suppose that $U(x,y) \rightarrow 0$ as $|x|+y \rightarrow \infty$.
Then $U(x,y) \equiv 0$ on $R \times R_{+}$.
Remark: The condition that U Uanishes'' at infinity
Can not be dropped.
For instance, let $U(x,y) \equiv y$, then
 $\Delta U = 0$ and $U(x,o) \equiv 0$.

Lemma 3 (Mean Value property of harmonic function).
Let
$$\Omega$$
 be an open set of \mathbb{R}^{2} . Let $U \in \mathbb{C}^{2}(\Omega)$
and suppose $\Delta U = 0$ on Ω . Suppose
 $B_{\mathbb{R}}(x_{0}, y_{0}) \subset \Omega$ where
 $B_{\mathbb{R}}(x_{0}, y_{0}) \subset \Omega$ where
 $B_{\mathbb{R}}(x_{0}, y_{0}) = \{(x, y) \in \mathbb{R}^{2} : (x - x_{0})^{2} + (y - y_{0})^{2} \leq \mathbb{R}^{2}\}$
Then $\forall 0 < r < \mathbb{R}$,
 $U(x_{0}, y_{0}) = \frac{1}{2\pi} \int_{0}^{2\pi} U(x_{0} + r\cos \theta, y_{0} + r\sin \theta) d\theta$
Be low we prove Thm 2 by assuming Lemma 3. The proof
of Lemma 3 will be postponed until next class.

Proof of Thm 1.
We use contradiction.
Suppose on the contrary that
$$\mathcal{U} \neq 0$$
.
Then $\exists (x_0, y_0) \in |\mathbb{R} \times |\mathbb{R}_+ \text{ such that}$
 $\mathcal{U}(x_0, y_0) \neq 0$.
 $\mathcal{U}(x_0, y_0) \neq 0$.

Notice that U is cts on

$$B_{R}(0,0) \cap (R \times Rt \quad (closed, bdd))$$
So U attains its maximum
on $B_{R}(0,0) \cap R \times Rt$ at some (X_{i}, Y_{i})
i.e.
 $U(x_{i}, y_{i}) = SuP \quad U(x_{i}y)$
 $(x_{i}y) \in B_{R}(0,0) \cap R \times Rt$
Since $U(x,y) < \frac{U(x_{0},y_{0})}{2} < u(x_{i},y_{1})$ for $(x,y) \in R \times Rt \setminus B_{R}(0,0)$,
it follows that
 $U(x_{i}, y_{i}) = SuP \quad U(x_{i}y)$.
 $(x_{i}y) \in R \times Rt$