Fourier Analysis
Api 11, 2024
Review.
Application 2: Steady state heat equation on the upper nalf plane.

$U=U(x, y)$ temperation distribution
(*) $\quad\left\{\begin{array}{l}\Delta u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad x \in \mathbb{R}, \quad y>0, \\ u(x, 0)=f(x), \quad x \in \mathbb{R} .\end{array}\right.$

Set

$$
\rho_{y}(x)=\frac{1}{\pi} \frac{y}{x^{2}+y^{2}}, \quad x \in \mathbb{R}, y>0 .
$$

By the method of Fourier transform, we derived that

$$
U(x, y)=f * J_{y}(x), \quad(x, y) \in \mathbb{R} x \mathbb{R}_{+}
$$

is a formal solution of
Next we will conduct a theoretic check.

Them 1. Let $f \in S(\mathbb{R})$. Let

$$
U(x, y)=f_{*} \rho_{y}(x), x \in \mathbb{R}, y>0 .
$$

Then u satisfies the following:
(1) $u \in C^{2}\left(\mathbb{R} \times \mathbb{R}_{+}\right)$and $\Delta u=0$
(2) $U(x, y) \rightrightarrows f(x)$ as $y \rightarrow 0$
(3) $\int_{-\infty}^{\infty}|u(x, y)-f(x)|^{2} d x \rightarrow 0$ as $y \rightarrow 0$
(4) $u(x, y) \rightarrow 0$ as $|x|+y \rightarrow \infty$.
(${ }^{\prime \prime} u$ vanishes at $\infty^{\prime \prime}$)

Pf. Here we only prove (4)
We will show that $\exists C>0$ such that

$$
|U(x, y)| \leqslant\left\{\begin{array}{l}
C \cdot\left(\frac{1}{1+x^{2}}+\frac{y}{x^{2}+y^{2}}\right) \\
\frac{c}{y}
\end{array}\right.
$$

for all $x \in \mathbb{R}, y>0$

To this end, recall that

$$
\rho_{y}(x)=\frac{1}{\pi} \frac{y}{x^{2}+y^{2}} \leqslant \frac{1}{\pi} \cdot \frac{1}{y}
$$

Hence

$$
\begin{aligned}
\left|f * \beta_{y}(x)\right| & \leq \int_{-\infty}^{\infty}|f(x-t)|\left|\rho_{y}(t)\right| d t \\
& \leqslant \int_{-\infty}^{\infty}|f(x-t)| \cdot \frac{1}{\pi} \cdot \frac{1}{y} d t \\
& =\frac{1}{\pi y} \cdot \int_{-\infty}^{\infty}|f(x)| d x \\
& \leqslant \frac{c}{y} .
\end{aligned}
$$

To see the other part.
Notice that

$$
\begin{aligned}
f * \rho_{y}(x) & =\int_{-\infty}^{\infty} f(x-t) \rho_{y}(t) d t \\
& =\int_{|t| \leqslant \frac{|x|}{2}}+\int_{|t|>\frac{|x|}{2}} f(x-t) \rho_{y}(t) d t \\
& =\text { (I) }+ \text { (II) }
\end{aligned}
$$

Then

$$
\begin{aligned}
& |(I)| \leqslant \int_{|t| \leqslant \frac{|x|}{2}}|f(x-t)| P_{y}(t) d t \\
& \leqslant \int_{|t| \leqslant \frac{|x|}{2}} \frac{\left(|x-t| \geqslant \frac{x}{2}\right)}{1+\left(\frac{|x|}{2}\right)^{2}} P_{y}(t) d t \\
& \leqslant \frac{C}{1+\left(\frac{|x|}{2}\right)^{2}} \cdot \underbrace{\int_{-\infty}^{\infty} \rho_{y}(t) d t}_{=1} \\
& \leqslant \frac{4 c}{1+|x|^{2}} \text {. } \\
& \left.\left\lvert\,(\text { II })\left|\leqslant \int_{|t| \geqslant \frac{|x|}{2}}\right| f(x-t)\right. \right\rvert\, \cdot \frac{1}{\pi} \frac{y}{y^{2}+t^{2}} d t \\
& \leqslant \int_{|t| \geqslant \frac{|x|}{2}}|f(x-t)| \cdot \frac{1}{\pi} \frac{y}{y^{2}+\frac{|x|^{2}}{4}} d t \\
& \leqslant \frac{4 y}{\pi\left(y^{2}+4 x^{2}\right)} \cdot \int_{-\infty}^{\infty}|f(t)| d t \\
& \leqslant \frac{\tilde{C} y}{y^{2}+x^{2}} \text {. }
\end{aligned}
$$

Thy 2 (Uniqueness)
Let $u \in C^{2}\left(\mathbb{R} \times \mathbb{R}_{+}\right) \cap C\left(\overline{\mathbb{R} \times \mathbb{R}_{+}}\right)$.
Suppose u satisfies that

$$
\left\{\begin{array}{lll}
\Delta u=0 & \text { on } & \mathbb{R} x \mathbb{R}_{+} \\
u(x, 0)=0 & \text { on } \mathbb{R}
\end{array}\right.
$$

Moreover suppose that $U(x, y) \rightarrow 0$ as $|x|+y \rightarrow \infty$.
Then $u(x, y) \equiv 0$ on $\mathbb{R} \times \mathbb{R}_{+}$.

Remark: The condition that U "Vanishes" at infinity can not be dropped.
For instance, let $u(x, y)=y$. Then $\Delta u=0$ and $u(x, 0)=0$.

Lemma 3 (Mean value property of harmonic function)
Let Ω be an open set of \mathbb{R}^{2}. Let $u \in C^{2}(\Omega)$ and suppose $\Delta u=0$ on Ω. Suppose
$B_{R}\left(x_{0}, y_{0}\right) \subset \Omega$ where

$$
B_{R}\left(x_{0}, y_{0}\right)=\left\{(x, y) \in \mathbb{R}^{2}:\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2} \leqslant R^{2}\right\}
$$

Then $\forall 0<r<R$,

$$
U\left(x_{0}, y_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(x_{0}+r \cos \theta, y_{0}+r \sin \theta\right) d \theta
$$

Below we prove Thm 2 by assuming Lemma 3. The proof of Lemma 3 will be postponed until next class.

Proof of The 1.
We use contradiction.
Suppose on the contrary that $U \neq 0$.
Then $\exists\left(x_{0}, y_{0}\right) \in \mathbb{R} \times \mathbb{R}_{+}$such that

$$
u\left(x_{0}, y_{0}\right) \neq 0
$$

WLOG, we assume that $U\left(x_{0}, y_{0}\right)>0$
(otherwise, we may consider $-U$)
Since U vanishes at infinity, we can find a large $R>0$ such that

$$
u(x, y)<\frac{1}{2} u\left(x_{0}, y_{0}\right)
$$

for all $(x, y) \in\left(\mathbb{R} \times \mathbb{R}_{+}\right) \backslash B_{R}(0,0)$

Notice that U is cts on

$$
B_{R}(0,0) \cap \overline{\mathbb{R}_{R} \times \mathbb{R}_{+}} \quad(\text { closed }, \text { sd })
$$

So U attains its maximum on $B_{R}(0,0) \cap \overline{\mathbb{R}^{2} \times \mathbb{R}_{+}}$at some $\left(x_{1}, y_{1}\right)$ ie.

$$
\begin{aligned}
U\left(x_{1}, y_{1}\right)= & \sup _{(x, y)} U(x, y) \\
& \in B_{R}(0,0) \cap \overrightarrow{\mathbb{R}_{\times 1}}
\end{aligned}
$$

Since $u(x, y)<\frac{u\left(x, y_{0}\right)}{2}<u(x, y$,$) for (x, y) \in \overline{\mathbb{R}_{\times 1}} \mathbb{R}_{+} \backslash B_{R}(0,0)$, it follows that

$$
U\left(x, y_{1}\right)=\sup _{(x, y) \in \overline{\mathbb{R}_{x} \mathbb{R}_{+}}} \frac{U(x, y)}{} .
$$

By the mean value property, for each

$$
\begin{gathered}
0<r<y_{1} \\
u\left(x_{1}, y_{1}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(x_{1}+r \cos \theta, y_{1}+r \sin \theta\right) d \theta \\
\Rightarrow u\left(x_{1}+r \cos \theta, y_{1}+r \sin \theta\right)=u\left(x_{1}, y_{1}\right)
\end{gathered}
$$

$$
0<r<y_{1}
$$

Letting $r \rightarrow y_{1}$,

$$
\begin{aligned}
U\left(x_{1}, 0\right) & =\lim _{r \rightarrow y_{1}} u\left(x_{1}, y_{1}-r\right) \\
& =u\left(x_{1}, y_{1}\right)>0
\end{aligned}
$$

Contradiction!

